Step of Proof: decidable__quotient_equal
12,41
postcript
pdf
Inference at
*
I
of proof for Lemma
decidable
quotient
equal
:
T
:Type,
E
:(
T
T
).
EquivRel(
T
;
x
,
y
.
E
(
x
,
y
))
(
x
,
y
:
T
. Dec(
E
(
x
,
y
)))
(
u
,
v
:(
x
,
y
:
T
//
E
(
x
,
y
)). Dec(
u
=
v
))
latex
by ((RepeatMFor 4 (D 0))
CollapseTHENA ((Auto_aux (first_nat 1:n) ((first_nat 1:n),(first_nat
C
3:n)) (first_tok :t) inil_term)))
latex
C
1
:
C1:
1.
T
: Type
C1:
2.
E
:
T
T
C1:
3. EquivRel(
T
;
x
,
y
.
E
(
x
,
y
))
C1:
4.
x
,
y
:
T
. Dec(
E
(
x
,
y
))
C1:
u
,
v
:(
x
,
y
:
T
//
E
(
x
,
y
)). Dec(
u
=
v
)
C
.
Definitions
x
,
y
.
t
(
x
;
y
)
,
t
T
,
x
(
s1
,
s2
)
,
P
Q
,
,
x
:
A
.
B
(
x
)
Lemmas
equiv
rel
wf
,
decidable
wf
origin